Dissimilarity Representation

Dissimilarities — Possible Assumptions

1. Positivity: d; =0
O 2. Reflexivity: d;=0
43 3. Definiteness: d;; = 0 objects i and j are identical
S 4. Symmetry: d;; = dj;

5. Triangle inequality: d;; < d; + dy

6. Compactness: if the objects i and j are very similar

then d; < 3.

7. True representation: if d; < 5 then the objects i and j
are very similar.

8. Continuity of d.
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Examples Dissimilarity Measures (2)
Comparison of spectra: some examples

| normalized spectra

spectra derivatives

cumulative ‘density’ spectra

W Eucldean, city biock,
max norm distance

In real applications, the dissimilarity measure should be robust to
noise and small aberrations in the (raw) measurements.
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Dissimilarity Representation ot used by rute

Training setB Dissimilarities d. betw
‘ Issimilarities ij etween

' all training objects
a PSR
A

Unlabeled object x to be classified

.
) 6, = (00 G G Gy )

The traditional Nearest Neighbor rule (template matching) finds:

label(argminyginge{di}) s
without using Dy. Can we do any better?
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Examples Dissimilarity Measures (1)

/\ A
B
A B B [}
(c) Measure by covers (d) Between skeletons

(a) Fish shapes (b) Area difference

Je & &)

The measure should be descriptive. If there is no preference,
a number of measures can be combined.
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Examples Dissimilarity Measures (3)

Dist(A,B):

a € A, points of A

b € B, points of B
d(a,b): Euclidean distance

D(A,B) = max_a{min_b{d(a,b)
D(B,A) = max_b{min_a{d(b,a

Hausdorff Distance (metric):
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}}

Modified Hausdorff Distance (non-metric):
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}}
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D(A,B) # D(B,A)



Examples Dissimilarity Measures (4)
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X= (X0 X oo X Y = (V1 Yo oo Vi)

De(X,Y) : £ edit operations X = Y
(insertions, deletions, substitutions)

DE(snert ,meer ) = 3:
snert = seert = seer = meer

ol o cf < €| o]

DE( ner ,meer ) = 2:
ner = mer = meer

Possibly weighted
Triangle inequality = computationally feasible
D(aa,bb) < D(abcdef,bcdd)
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Prospect of Dissimilarity based Representations: Zero

Let us assume that we deal with true representations:
d,, < & if and only if the objects a and b are very similar.

If § is sufficiently small then a and b belong to the same class, as b
is just a minor distortion of a (assuming true representations).

However, as Prob(b) > 0, there will be such an object for sufficiently
large training sets = zero classification error possible!

= Dissimilarity representation can be a true representation
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Classification of Dissimilarity Data

Examples Dissimilarity Measures
(5)

Matching new objects to various templates:
class(x) = class(argmin,(D(x,y)))

Dissimilarity measure appears to be non-metric.

A.K. Jain, D. Zongker;, Representation and recognition of handwritten digit using
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.
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Why a Dissimilarity Representation?

Many (exotic) dissimilarity measures are used in pattern recognition

- they may solve the connectivity problem (e.g. pixel based features)

- they may offer a way to integrate structural and statistical approaches
e.g. by graph distances.

Prospect of zero-error classifiers by avoiding class overlap

Better rules than the nearest neighbor classifier appear possible
(more accurate, faster)
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Alternatives for the Nearest Neighbor Rule

Training set dll d12 d13 d14 d15 dlﬁ dl‘l
B Dissimila}r[ties dij‘between d,,d,,d,,d,,d,5d,6d,,
A")? all training objects dyyd,dod, doodyody
'* ,. DT = d41d42d43d44d45d45d47
d51d52d53d54d55 d5ﬁ d57

d51d52d63d64d65d65d57

Unlabeled object x to be classified (o N N O O

Pekalska, The dissimilarity
representation for PR.
World Scientific, 2005.

1. Dissimilarity Space
2. Embedding
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The Dissimilarity Space

Example Dissimilarity Space: NIST Digits 3 and 8

333333333333833333332%
33333333333333332333
133223323%33333333%373
2383737533333533231333
33333333338333333333
B8BLBBEBELR8FFFTTLTS
782886888 8888888868838
8BFBEBBERESECRIRTILT S
FEFEFOFPFE898989889588
GBBBRABARIFFIESIFITINS

Example of raw data

5
TUDelft

Dissimilarity Space Classification €= Nearest Neighbor Rule

Modified Haussdorff distance on contours of digits
03 =

* Nearest neighbour results
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Classification error

@ Size of the representation set

I
selection__ (48
a 20 40 60
TRAINING size per class

Dissimilarity based classification outperforms the nearest neighbor rule.
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Alternative 1: Dissimilarity Space

Dissimilarities 2 N
r r r Given labeled training set A '»
d11d12 d13 dl
d,,d,,d,,d,, Unlabeled object to be classiﬁed,
d11d32d13d14
d41d42d43d44
d51
d
d
d

Selection of 3 objects for representation T3(d;)
[ mwean oty eretontor Casten©
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Example Dissimilarity Space: NIST Digits 3 and 8

NIST digits: Hamming distances of 2 x 200 digits

I

d30
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Embedding of (non-Euclidean) Dissimilarities



Alternative 2: Embedding

>
A ‘»
PP

- Dissimilarity matrixD > X

Training set Is there a feature space for which Dist(X,X) = D ?
X, .
. S . ° Position points in a vector space such
that their Euclidean distances > D
° .
' X
[ mwean Teosmint RerematontorCaston 55|
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Embedding of non-metric measurements

' B -> Dissimilarity matrixD > X
PG .
L L e |

If the dissimilarity matrix cannot be explained from a vector space,
(e.g. for Hausdorff and Hamming distance of images)

or if dj > dy + dy (triangle inequality not satisfied)

embedding in Euclidean space not possible

— Pseudo-Euclidean embedding
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Non-metric distances

Weighted-edit distance for strings

object 78 object 425
149

S/

Bunke's Chicken Dataset g
object 419

Single-linkage clustering

D(A,Q) > D(AB) + (B,C)

Fisher criterion

JA,C)=0 J(AB)=large
Oat0s J(C,B) =small = J(A,B)
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Embedding
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Euclidean - Non Euclidean - Non Metric

A 10 B

euclidean non-euclidean non-euclidean
metric metric non-metric
3
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(Pseudo-)Euclidean Embedding
mxm D is a given, imperfect dissimilarity matrix of training objects.
Construct inner-product matrix: B=-1JD?J J=1-111
Eigenvalue Decomposition , B=Q AQT
(problem: A< 0)

. . 1
Select k eigenvectors: X = QA%

Let 5, be a k x k diag. matrix, J(i,i) = sign(A,(I,1
A(i,i) < 0 - Pseudo-Euclidean

nxm D, is the dissimilarity matrix between new objects and the training set.

The inner-product matrix: B, =—1(D?J-111"D®))

The embedded objects:  Z= BZQk\Ak\%Sk
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PES: Pseudo-Euclidean Space (Krein Space)

If D is non-Euclidean, B has p positive and  negative eigenvalues.

A pseudo-Euclidean space € with signature (p,d), k =p+q, is a non-
degenerate inner product space Ry = ERF @ ERQ such that:

P 9 | 0
(y) =Xy =2 Xy =2y, 3 =[ o i }
= j=p+1

d2(x,y) = (x -y, x=y), =d5(x,y)-dz(x,y)
R iR' 4

R k 3

. P 2

dxy) =d Fxy) - d5fxy)

-1

PE Space <-> Kernels

K(x,y)=-1ID(xy)y?J J=1-%11

may by considered as a kernel. If

K(x,y) = <L(x), L(y) >

* The kernel trick may be used: operations defined on inner products
in kernel space can be operated directly on K(x,y) without embedding!

 True for Mercer kernels (all eigenvalues > 0).

« Difficult for indefinite kernels.

« Studying classifiers in PE space is studying the indefinite kernel space.
« Dissimilarities are more informative than kernels (due to normalization).
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Distance based classifiers in PE Space

o Gircles in 2D PE Space \\d(x,o) < 0
\%é .. 2/(/".A °
\ J.’ q LN
\ ) S d(x,0) >0
5 | ‘ . o .
./ T N \ p
M7 Xassigned 0.8
%% 0 5 10

Nearest Neighbour and
Metric in PE Space. Nearest Mean can be properly defined.
Equidistant points to the origin.  SVM ? What is the distance to a line?
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Distances in PES

d%(0,A) >0
d%(0,E) >0
d%(0,B) =0
d?(0,D) <0

All points in the grey area
are closer to O than O itself !?

Any point has a negative square
distance to some points on the
line vIx=0.
1Can it be used as a classifier?
4 " Can we define a margin as in
the SYM?
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Classifiers in Pseudo-Euclidean Space

SVM in PE Space

= SVM on indefinite kernels may not converge as Mercer’s
conditions are not fulfilled.

=However, if it converges the solution is proper:
|w'Sw|
is minimized.

= See also: B. Haasdonk, Feature Space Interpretation of SVMs with
Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005.
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Densities in PE Space

= Densities can be defined in a vector space on de basis of
volumes, without the need of a metric.

= Density estimates however, often need a metric.
E.g. the Parzen estimator:

A d(x,y,)’
100 =+ X cep(- 2E0)
Yi

needs a distance definition d(x,y).
= There is no problem, however, in case for all objects d(x,y) > 0.
= How can Gaussian densities be defined?

= Note that QDA in PES is identical to the QDA in AES as the
signature cancels. The relation with a Gaussian distribution,
however, is lost.

)
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Dissimilarity based classification procedured compared

Training set A"g‘\ > Dissimilari trix D
issimilarity matrix
PP i

Test object x o

1. Nearest Neighbour Rule

2. Reduce training set to representation set

= dissimilarity space

3. Embedding:Select large A; > 0 = Euclidean space} discriminant function
Select large |A;| > 0 — pseudo-Euclidean space

- Dissimilarities d, with training set
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Polygon Data

e Vs DL O N T
Heptagons ﬁ @Wﬁ@b@ﬁ ﬂ@

no class overlap\ Minimum edge length: 0.1 of maximum edge length
zero error

Distance measures: Hausdorff D = max { max(min(d;)) , max;(min(dy)) }.

Modified Hausdorff D = max {mean(minj(d;)), mean,(min(d;)) }. (no metric!)
d; = distance between vertex i of polygon_1 and vertex j of polygon_2.
Polygons are scaled and centered.

Find the largest of the [
smallest vertex distances
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Dissimilarity based classifiers compared

Three Approaches Compared for the Zongker Data

Digit data

0
—— RLDG; Rep. Set
—— LP; Rep. Set

N — RLDC; Embed.

X :\\Nearest neighbour Rule

Embedding

Averaged generalization error

Dissimilarity Spac

500 1000 1500
Size of the representation set R

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule
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Dissimilarity Based Classification of Polygons

. Polygon data
i “J - G e Sal
-~ . Set
018 4 = [Dc Embed.
== 1-NN
019 %'L B R
Soaak Il
H s
E il ‘
E oz '+ Nearest neighbour Rule
E af B~ Issl
3099 el
EFnots N T
i
0.04f
==
Dissimilarity Space——
TH00

500 1000
Suze of the representation set R

Zero error difficult to reach!
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Prototype Selection Prototype Selection: Polygon Dataset

Polydistm; #Objects: 1000; Classifier: BayesNQ

Assume D(T,R) are the distances between a training set T and a 9y ~ A-NN-final
representation set R. %s \ v . : ::: final
A classifier can be trained: 7 T
= on the distances directly se RS
= in dissimilarity spaces £s T odeseek”
= in embedded spaces defined by D(R,R) €4 —— FealSel”
) @ —=— KContres-LP *

Selection of prototypes R T: L B e N N e = LinProg -

" ¢ EdiCon
= Random &,
= k-centres, mode seeking or some clustering procedure g 3 =T
= Feature selection methods . L
= Editting and condensing methods 4 6 B10 14 20 30 40 5570 100 140 200

N : Number of prototypes
= Sparse linear programming methods (L;-norm SVM)
The classification performance of the quadratic Bayes Normal classifier and
s oo 510 ENVIDGSSTAN spaces ang e duect il 953 lonctionof e
number of selected prototypes. Note that for 10-20 prototypes already
3
TUDelft better results are obtained than by using 1000 objects in the NN rules.

Dissimilarity Representation

= Based on a pairwise comparison of objects
= Alternative to features for using expert knowledge

= Various ways of construction vector spaces, useful for
traditional classifiers.

= May show good performances compared to nearest
neigbour rule
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