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Dissimilarity Representation 
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Dissimilarity Representation 
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The traditional Nearest Neighbor rule (template matching) finds:  
           label(argmintrainset{dxi})  ,  
without using DT. Can we do any better? 

Dissimilarities dij between 

all training objects    

Training set  
B 

A 

) d d d d d d d (d x7x6x5x4x3x2x1x 

Unlabeled object x to be classified 

Not used by NN Rule 
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Dissimilarities – Possible Assumptions 

 1. Positivity:  dij  0 

 2. Reflexivity:  dii = 0  

 3. Definiteness:   dij = 0 objects i and j are identical 

 4. Symmetry:       dij = dji  

 5. Triangle inequality: dij < dik + dkj  

 6. Compactness: if the objects i and j are very similar 
then dij < d. 

 7. True representation: if dij < d then the objects i and j 

are very similar. 

 8. Continuity of d. 
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Examples Dissimilarity Measures (1) 

The measure should be descriptive. If there is no preference, 
a number of measures can be combined. 
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Examples Dissimilarity Measures (2) 
Comparison of spectra: some examples 

In real applications, the dissimilarity measure should be robust to 
noise and small aberrations in the (raw) measurements. 
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Examples Dissimilarity Measures (3) 

A B 

Dist(A,B): 

a  A, points of A 
b B, points of B 
d(a,b): Euclidean distance 

D(A,B) = max_a{min_b{d(a,b)}} 

D(B,A) = max_b{min_a{d(b,a)}} 

Hausdorff Distance (metric):  
DH = max{max_a{min_b{d(a,b)}} , max_b{min_a{d(b,a)}}} 

Modified Hausdorff Distance (non-metric): 
DM = max{mean_a{min_b{d(a,b)}},mean_b{min_a{d(b,a)}}} 

max B 

A 

max 

B 

A 

D(A,B) ≠ D(B,A)  
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Examples Dissimilarity Measures (4) 

b

a

u

v

u

b

u

a u a v v b

Possibly weighted 

Triangle inequality  computationally feasible 

D(aa,bb) < D(abcdef,bcdd) 

 X = (x1, x2, .... , xk)        Y = (y1, y2, .... , yn) 

DE(X,Y) : S edit operations X  Y 

(insertions, deletions, substitutions) 

DE(snert ,meer ) = 3: 
snert  seert  seer  meer 

DE( ner ,meer ) = 2: 
ner  mer  meer 
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Examples Dissimilarity Measures 
(5) 

Matching new objects to various templates: 
class(x) = class(argminy(D(x,y))) 
 
Dissimilarity measure appears to be non-metric. 

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit  using 
deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391. 
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Prospect of Dissimilarity based  Representations: Zero 
 

Let us assume that we deal with true representations: 

dab < d  if and only if the objects a and b are very similar. 

 

If d is sufficiently small then a and b belong to the same class, as b 
is just a minor distortion of a (assuming true representations). 

 

However, as Prob(b) > 0, there will be such an object for sufficiently 
large training sets  zero classification error possible! 

 

 Dissimilarity representation can be a true representation 

 

d
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Why a Dissimilarity Representation? 

Many (exotic) dissimilarity measures are used in pattern recognition 

- they may solve the connectivity problem (e.g. pixel based features) 

- they may offer a way to integrate structural and statistical approaches 

  e.g. by graph distances. 

 

Prospect of zero-error classifiers by avoiding class overlap 

 

Better rules than the nearest neighbor classifier appear possible 

(more accurate, faster)  

 

Classification of Dissimilarity Data 
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Alternatives for the Nearest Neighbor Rule 
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Dissimilarities dij between 

all training objects    

Training set  
B 

A 

) d d d d d d d (d x7x6x5x4x3x2x1x 

Unlabeled object x to be classified 

1. Dissimilarity Space 
2. Embedding 

Pekalska, The dissimilarity  
representation for PR. 
World Scientific, 2005. 



3 

The Dissimilarity Space 
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Alternative 1: Dissimilarity Space 
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) d d d d d d d (d x7x6x5x4x3x2x1x 

r1 r2 r3 

Dissimilarities 

Selection of 3 objects for representation 

B 

A 

r1(d1) 

r2(d4) 

r3(d7) 

Given labeled training set 

Unlabeled object to be classified  
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Example Dissimilarity Space: NIST Digits 3 and 8 

Example of raw data 
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Example Dissimilarity Space: NIST Digits 3 and 8 

NIST digits: Hamming distances of 2 x 200 digits 

d10 

d30

0 
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Dissimilarity Space Classification  Nearest Neighbor Rule 

Modified Haussdorff distance on contours of digits 

Dissimilarity based classification outperforms the nearest neighbor rule. 

Embedding of (non-Euclidean) Dissimilarities 



4 

25 June 2013 65 The Dissimilarity Representation for Classification 

Alternative 2: Embedding 

Training set  

B 

A    Dissimilarity matrix D      X 

Is there a feature space for which Dist(X,X) = D ? 

1x

2x

Position points in a vector space such  
that their Euclidean distances  D 
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Embedding 
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Embedding of non-metric measurements 

If the dissimilarity matrix cannot be explained from a vector space, 

(e.g. for Hausdorff and Hamming distance of images) 

or if dij > dik + dkj  (triangle inequality not satisfied) 

embedding in Euclidean space not possible  

 Pseudo-Euclidean embedding 

 

B 

A 

   Dissimilarity matrix D      X 

dkj 
dik 

dij 
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  Euclidean  -  Non Euclidean  -  Non Metric 
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Non-metric distances 

14.9

7.8 4.1

object 78

object 419

object 425

Bunke’s Chicken Dataset

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

A B–

x

A B

A
B

C

Weighted-edit distance for strings Single-linkage clustering 
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BAB)J(A,
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 0C)J(A,  largeB)J(A, 

B)J(A,smallB)J(C, 

Fisher criterion 
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(Pseudo-)Euclidean Embedding 
 

mm D is a given, imperfect dissimilarity matrix of training objects.   

Construct inner-product matrix: 

Eigenvalue Decomposition ,  

Select k eigenvectors:                        (problem:  Lk< 0) 

Let k be a k x k diag. matrix, k(i,i) = sign(Lk(i,i)) 

                                                       Lk(i,i) < 0  Pseudo-Euclidean 

nm Dz is the dissimilarity matrix between new objects and the training set. 

The inner-product matrix:  

The embedded objects:  
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PES: Pseudo-Euclidean Space (Krein Space) 

If D is non-Euclidean, B has p positive and q negative eigenvalues. 

A pseudo-Euclidean space ε with signature (p,q), k =p+q, is a non-

degenerate inner product space k = p  q such that: 
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Distances in PES 

O 

0)A,O(d2 

0)E,O(d2 

0)B,O(d2 

0)D,O(d2 

All points in the grey area  
are closer to O than O itself !? 

Any point has a negative square 
distance to some points on the  
line vTJx=0.  
Can it be used as a classifier? 
Can we define a margin as in  
the SVM? 
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PE Space  Kernels 

may by considered as a kernel. If 

 

Jy)JD(x,)y,x(K (2)
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• The kernel trick may be used: operations defined on inner products  
in kernel space can be operated directly on K(x,y) without embedding!  

• True for Mercer kernels (all eigenvalues ≥ 0). 

• Difficult for indefinite kernels. 

• Studying classifiers in PE space is studying the indefinite kernel space. 

• Dissimilarities are more informative than kernels (due to normalization). 

Classifiers in Pseudo-Euclidean Space 
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Distance based classifiers in PE Space 

Nearest Neighbour and 

Nearest Mean can be properly defined. 

SVM ? What is the distance to a line? 

p 

q 

A 

B 

X 
0),x(d 

0),x(d 

Metric in PE Space. 
Equidistant points to the origin. 

X assigned to B 
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SVM in PE Space 

SVM on indefinite kernels may not converge as Mercer’s 
conditions are not fulfilled. 
 

However, if it converges the solution is proper:  
 
 
is minimized. 
 

 See also: B. Haasdonk, Feature Space Interpretation of SVMs with 
Indefinite Kernels, IEEE PAMI, 24, 482-492, 2005. 

|ww| T
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Densities in PE Space 

 Densities can be defined in a vector space on de basis of 
volumes, without the need of a metric. 

 Density estimates however, often need a metric. 
E.g. the Parzen estimator: 
 
 
 
needs a distance definition d(x,y). 

 There is no problem, however, in case for all objects d(x,y) > 0. 

 How can Gaussian densities be defined? 

 Note that QDA in PES is identical to the QDA in AES as the 
signature cancels. The relation with a Gaussian distribution, 
however, is lost. 
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1  Dissimilarity based classifiers compared 
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Dissimilarity based classification procedured compared 

1. Nearest Neighbour Rule 

2. Reduce training set to representation set  

 dissimilarity space 

3. Embedding:Select large Lii > 0  Euclidean space 

Select large |Lii| > 0   pseudo-Euclidean space 
} 

B 

A 
Training set 

Test object x 

 Dissimilarity matrix D 

 Dissimilarities dx with training set 

discriminant function 
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Three Approaches Compared for the Zongker Data 

Dissimilarity Space equivalent to Embedding better than Nearest Neighbour Rule 
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Polygon Data 

Convex 
Pentagons 

Heptagons 

Minimum edge length: 0.1 of maximum edge length no class overlap 
zero error 

Find the largest of the  
smallest vertex distances 

Distance measures:  Hausdorff  D = max { maxi(minj(dij)) ,  maxj(mini(dij)) }. 

                Modified Hausdorff  D = max {meani(minj(dij)), meanj(mini(dij)) }. (no metric!) 

dij = distance between vertex i of polygon_1 and vertex j of polygon_2. 

Polygons are scaled and centered.  
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Dissimilarity Based Classification of Polygons 

Zero error difficult to reach! 
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Prototype Selection 

Assume D(T,R) are the distances between a training set T and a  

representation set R. 

A classifier can be trained: 

 on the distances directly 

 in dissimilarity spaces 

 in embedded spaces defined by D(R,R) 

Selection of prototypes RT: 

 Random 

 k-centres, mode seeking or some clustering procedure 

 Feature selection methods 

 Editting and condensing methods 

 Sparse linear programming methods (L1-norm SVM) 
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Prototype Selection: Polygon Dataset 

The classification performance of the quadratic Bayes Normal classifier and 

the k-NN in dissimilarity spaces and the direct k-NN, as a function of the 

number of selected prototypes. Note that for 10-20 prototypes already 

better results are obtained than by using 1000 objects in the NN rules. 
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Dissimilarity Representation 

 Based on a pairwise comparison of objects 

 Alternative to features for using expert knowledge 

 Various ways of construction vector spaces, useful for 
traditional classifiers. 

 May show good performances compared to nearest 
neigbour rule  


