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Pattern Recognition: Speech
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Pattern Recognition: Seismics
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Pattern Recognition: Shape Recognition

Pattern Recognition is very often Shape Recognition:
- Images: B/W, grey value, color, 2D, 3D, 4D

« Time Signals

» Spectra
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Vector Representation

Pattern Recognition Problems

T =i

To which class (segment) ~ Where is an object of
belongs every pixel? interest (detection);
What is it (classification)?

To which class
belongs an image
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Pattern Recognition: Shapes

Examples of objects for different classes
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Object of unknown class to be classified
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Pattern Recognition System

Representation H Generalization
ah

perimeter &

Feature Representation T perimeter
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Pattern Recognition System Pattern Recognition System

Representation H Generalization Representation H Generalization
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Dissimilarity Representation I
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Pixel Representation
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Pattern Recognition System Good Representations

« Class specific
Representation H Generalization Different classes should be ?
-\ N

represented in different positions
in the representation space.

~ « Compact O

& Every class should be represented

2 in a small set of finite domains. (S

3 0
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Combining Classifiers Classifier_1
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Compactness True Representations
Representations of real world similar objects are close.
There is no ground for any generalization (induction) on representations ' ' » a
that do not obey this demand.
(A.G. Arkedev and E.M. Braverman, Computers and Pattern Recognition, 1966.) ° oo Similar objects are close
% L and
L]
@ea)| e o%, “e0s Dissimilar objects are distant.
. .. ° 0 o o
The compactness hypothesis is not . 4
sufficient for perfect classification L

(perimeter) X;

as dissimilar objects may be close.
-> class overlap
= probabilities

- no probabilities needed, domains are sufficient!
! (perimeter) X,
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Distances and Densities

(X ]
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2 to be classified as X, R
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B - because itis most @) | B g FOMD o .
close to an object B o o o0 .o? [
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A — because the local o ° e
density of A is larger. o o ° : L e
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Probabilistic Generalization

p(x| )

p(x M)

I

T, = height —>

x = height measured

DR

What is the gender of a person with this height?

Best guess is to choose the most ‘probable’ class (— small error).
= Good for overlapping classes.

= Assumes the existence of a probabilistic class
distribution and a representative set of examples.
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Density estimation
« The density is defined on the whole feature space.
« Around object x, the density is defined as:
dP(x) _ ( fraction of objects
dx volume

« Given n measured objects, e.g. person’s height (m)
how can we estimate p(x)?

p(x) =
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Features Reduce

(perimeter) Xy

Due to reduction essentially different objects are represented identically.
- The feature space representation needs a statistical, probabilistic generalization
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Bayes decision rule, formal

p(A]x) > p(Blx) > AelseB
PXIBIP(B) 5 peise
p(X)

Bayes: P(XIA) p(A)
p(x)

p(x|A) p(A) > p(x|B)p(B) > AelseB

| 2-class problems: S(x) = p(x|A) p(A) - p(x|B) p(B) >0 > AelseB

| n-class problems: Class(x) = argmax,(p(x|®) p(®)) |
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The Gaussian distribution (3)

u * Normal distribution =
04 Gaussian distribution

03 » Standard normal
distribution:
u=0,02=1

01 » 95% of data between
[ - 20, u+20] (in 1DY)

: ' 1 Sl (x=p)’
p(X)—Wexp( o J
[ mwems meosmampeeordestern 6|
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Multivariate Gaussians

Quadratic discriminant functions

5

[N
| R(X)=—E(X—HA)TZA’(X—uA)+E(><—HE)TEJ(X—HEHCO"SI |

parabole

!
. (nearly) linear . ellipse

hyperbole

G=|3 1%
1% 2

10 [J 0 20
+ k - dimensional density: QDC assumes that classes are normally

distributed. Wrong decision boundaries are
estimated if this does not hold.

1 1
- - —Z(x=u)"GHx -
PO= s exp( , (X=m)"G(x #))
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TUDelft TUDelft
Linear discriminant function Parzen density estimation (1)
Xz | X2 «Fix volume of bin, vary positions of bins, add contribution of each bin
Define ‘bin’-shape (kernel):
/ K(r)>0
j K(r)dr=1 !
Xy — Xy — «For test object z sum all bins E +: 3.
Optimal classifier for normal distributions 1 Z—Xi T* “. .”
Normal distributions with equal with unequal covariance matrices %, and p(Z) =1 Z K o .
covariance matrices % are optimally 5, can be approximated by: hn i h A A
separated by a linear classifier +

R(X) = (1a —p) "= "X+ const R(9 = (s — 1) (P(AXE, +P(B)Eg) ' +const
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Parzen density estimation (2)
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Parzen: density estimates vs the smoothing parameter

1D
« With Gaussian kernel:K(X) = ﬁexp (— 2’(—;2) o smallh o B | Large h
Parzen: N o o

p(X) »
2D
q A A
2 [y - 2) 2|
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Nearest neighbor rule (1-NN rule) Support vector machine (SVM)

Assign a new object to the class of the nearest neighbor in the training set. . N
1995-2005 For linearly-separable classes find

the few objects that determine the
classifier. These are support vectors.

% ‘ o ) 1-NN rule: X2T
N  Often relies on the Euclidean distance.
Other distance measures can be used.

They have the same distance to the
classifier: the margin.

« Insensitive to prior probabilities! Identical to ) o
maximum-margin classifier
* Scaling dependent. Features should be

scaled properly. S = zﬂ,(x,rx)

S(x) = w' x, min(w’ w)

There are no errors on the training set. The classifier is overtrained.
[ mwems  Teosmmorewteweston x| [ mwems  Teosmhorewtewestern = |
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Measuring Human Relevant Information

gﬁy?aazgsa
Pixel Representation § % g g‘ @ &i aa
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ixel . Peaking Phenomenon, Overtraining
Pixel Representation Curse of Dimensionality, Rao’s Paradox

3333 B ) i T7 777

Moments -

Fourier descriptors I Pattern Recognition Paradox
g Faces

Morphology Classification

training set size

16x16 error

Pixels

Pixels are more general, initially complete representation

Large datasets are available > good results for OCR feature set size (dimensionality)

classifier complexity

[ mwmeron T evemb et casteten  » |
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The Connectivity Problem in the Pixel

Representation
Image

Images in pixel space

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.
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The Connectivity Problem in the Pixel Representation

image_3

Feature Space

class subspaci

%
TUDelft

Reasons for selecting a pixel (sample) representation

» No good features can be found
- Sufficient training samples are available

- Direct, fast classification of the image
(linear classifier == convolution)

[ s T evemb et casteten ]
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nnectivity Problem in the Pixel Representation
. Feature space

Reshuffling pixels
will not change the classification
Test object
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The Connectivity Problem in the Pixel Representation

i ¥

Image

) .

Dependent (connected) measurements are represented independently.
The dependency has to be refound from the data.

Images in pixel space
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Domains instead of Densities

No well sampled training sets are needed.
Statistical classifiers have still to be developed.

Class structure <-> Object invariants

[ mmmeios T evema et asteton @]
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Domain-based Classification Wrong Intuition of High Dimensional Spaces

2D-intuition does not work for high dimensional spaces

All points are bounda
1000 normally distr. polnts |n R20 95% on the convex hull.

g nts tend to have equal distances
uared Euclidean distances of points in R1024 are distributed as
N?1024 32«/2), so distances are all equal within 10%.

verl: not visibl
1000 points of two 5% overlapping classes in R50 can be
linearly separable

Moreover:
o Qutlier sensitive. do real world measurements with n > 100 really exist?
= Subspace approaches

,,’ * Do not trust class densities.
 Estimate for each class a domain.

« Distances instead of densities

How to construct domain based classifiers?

T e T e
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Reasons for selecting a pixel (sample) representation Vector Representatlons

« Features: reduce - class overlap
« Pixels: dimensionality problems
- Sufficient training samples are available « Dissimilarities?

» No good features can be found

- Direct, fast classification of the image
(linear classifier == convolution)
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