ct_lcurves Learning curves of active learning for MNIST8

PRTools and ClusterTools should be in the path

A review of all Clustertools examples.

Download the m-file from here.

Some learning curves are computed for active learning using the cluster prototypes for labeling the corresponding cluster. The fast modeseeking procedure MODECLUSTF is used for clustering. Three modifications are shown

Contents

Prepare environment and read data

prtime(10)                   % restrict iterative optimisation to 10s
delfigs                      % delete existing figures
randreset;                   % takes care of reproducability
prwarning(2)                 % show warnings
a = mnist8;                  % 8x8 version of the MNIST dataset

Find multilevel clusterings

labm = a*modeclustf(6,[],false);  % avoid nesting
labn = labm*reclustn;             % with nesting
labk = labsort(labm,'upred',100)*reclustk([2 5 10 20 50 100]);

Compute learning curves

em = clustlcurve(labm,a);
en = clustlcurve(labn,a);
ek = clustlcurve(labk,a);
ec = clusteval(labm,a,'comb');

Show results

figure;
plote({em,en,ek,ec},'nolegend');
legend('ModeSeek','Nested','Interpolated','LabelProp')
title(['Active learning curve ' getname(a)])

Comments