pe_svc
PE_SVC
SVC for PE spaces
W = PE_SVC(A,C)
W = A*PE_SVC([],C)
Input | A | Pseudo-Euclidean dataset | C | Trade_off parameter in the support vector classifier. Default C = 1; |
Output | W | Mapping: Support Vector Classifier |
Description Computation of the linear SVC classifier for the Pseudo-Euclidean dataset | A. Note that testsets should be defined in the same PE space | as | A. |
Warning: class prior probabilities in A are neglected. Example(s)
trainset = gendatm;
testset = gendatm;
Dtrain = trainset*proxm(trainset,'m',1);
Dtest = testset*proxm(testset,'m',1);
w = pe_em(Dtrain);
Xtrain = Dtrain*w;
Xtest = Dtest*w;
v = pe_svc(Xtrain);
Xtest*v*testc
See also
mappings, datasets, pe_em, This file has been automatically generated. If badly readable, use the help-command in Matlab. |
|