DisTools Contents

DisTools User Guide

pe_svc

PE_SVC

SVC for PE spaces

    W = PE_SVC(A,C)
    W = A*PE_SVC([],C)

Input
 A Pseudo-Euclidean dataset
 C Trade_off parameter in the support vector classifier.  Default C = 1;

Output
 W Mapping: Support Vector Classifier

Description

Computation of the linear SVC classifier for the Pseudo-Euclidean

dataset A. Note that testsets should be defined in the same PE space
as A.

Warning: class prior probabilities in A are neglected.

Example(s)

 trainset = gendatm;
 testset = gendatm;
 Dtrain = trainset*proxm(trainset,'m',1);
 Dtest  = testset*proxm(testset,'m',1);
 w = pe_em(Dtrain);
 Xtrain = Dtrain*w;
 Xtest = Dtest*w;
 v = pe_svc(Xtrain);
 Xtest*v*testc

See also

mappings, datasets, pe_em,

DisTools Contents

DisTools User Guide

This file has been automatically generated. If badly readable, use the help-command in Matlab.