DisTools Contents

DisTools User Guide

proxxm

PROXXM

Proximity Mapping

    W = PROXXM(A,TYPE,P,WEIGHTS)
    W = A*PROXXM([],TYPE,P,WEIGHTS)

Input
 A MxK Dataset
 TYPE Type of the proximity (optional; default: 'distance')
 P Parameter of the proximity (optional; default: 1)
 WEIGHTS Weights (optional; default: all 1)

Output
 W Proximity mapping

Description

Computation of the KxM proximity mapping (or kernel) defined by the  MxK dataset A. Unlabeled objects in A are neglected. If B is an NxK  dataset, then D=B*W is the NxM proximity matrix between B and A. The  proximities can be defined by the following types

     'POLYNOMIAL'   | 'P':  SIGN(A*B').*(A*B').^P
     'HOMOGENEOUS'  | 'H':  SIGN(A*B').*(A*B').^P
     'EXP'          | 'E':  EXP(-(||A-B||)/P)
     'EXP-SUM'      | 'ES': SUM_Z SIGN(P(Z)) * EXP(-(||A-B||)/P(Z))
     'RBF'          | 'R':  EXP(-(||A-B||.^2)/(P*P))
     'RBF-SUM'      | 'RS': SUM_Z SIGN(P(Z)) * EXP(-(||A-B||.^2)/(P(Z)^2))
     'SIGMOID'      | 'S':  SIGM(A*B'/P)
     'DSIGMOID'     | 'DS': SIGM(||A-B||^(2P(1))/P(2))
     'DISTANCE'     | 'D':  ||A-B||.^P
     'MULTIQUADRIC' | 'MQ': SQRT(||A-B||.^2/P(1) + P(2))
     'THIN-PLATE'   | 'TP': ||A-B||.^(2*P(1))/P(2) * LOG(1+||A-B||.^(2*P(1))/P(2))
     'N-THIN-PLATE' | 'NTP': -||A-B||.^(2*P(1))/P(2) * LOG(1+||A-B||.^(2*P(1))/P(2))
     'MINKOWSKI'    | 'M':  SUM(|A-B|^P).^(1/P)
     'CITY-BLOCK'   | 'C':  SUM(|A-B|)
     'COSINE'       | 'O':  1 - (A*B')/||A||*||B||
     'FOURIER'      | 'F'
     'TANH'         | 'T':  TANH(P*(A*B')/LENGTH(A) + P);
     'ANOVA'        | 'A':  ANOVA MODEL
     'BSPLINE'      | 'B':  BSPLINE MODEL, ORDER P
     'ANOVABSPLINE' | 'AB': ANOVA-BSPLINE MODEL, ORDER P
     'ANOVASPLINE1' | 'AS1':ANOVA-SPLINE MODEL, ORDER 1
     'ANOVASPLINE2' | 'AS2':ANOVA-SPLINE MODEL, ORDER 2
     'ANOVASPLINE3' | 'AS3':ANOVA-SPLINE MODEL, ORDER 3

In the polynomial case for a non-integer P, the proximity is computed  as D = SIGN(S+1).*ABS(S+1).^P, in order to avoid problems with negative  inner products S = A*B'. The features of the objects in A and B may be  weighted by the weights in the vector WEIGHTS.

See also

proxm, mappings, datasets,

DisTools Contents

DisTools User Guide

This file has been automatically generated. If badly readable, use the help-command in Matlab.