proxxm
PROXXM
Proximity Mapping
W = PROXXM(A,TYPE,P,WEIGHTS)
W = A*PROXXM([],TYPE,P,WEIGHTS)
Input | A | MxK Dataset | TYPE | Type of the proximity (optional; default: 'distance') | P | Parameter of the proximity (optional; default: 1) | WEIGHTS | Weights (optional; default: all 1) |
Output | W | Proximity mapping |
Description Computation of the KxM proximity mapping (or kernel) defined by the MxK dataset A. Unlabeled objects in A are neglected. If B is an NxK dataset, then D=B*W is the NxM proximity matrix between B and A. The proximities can be defined by the following types
'POLYNOMIAL' | 'P': SIGN(A*B').*(A*B').^P
'HOMOGENEOUS' | 'H': SIGN(A*B').*(A*B').^P
'EXP' | 'E': EXP(-(||A-B||)/P)
'EXP-SUM' | 'ES': SUM_Z SIGN(P(Z)) * EXP(-(||A-B||)/P(Z))
'RBF' | 'R': EXP(-(||A-B||.^2)/(P*P))
'RBF-SUM' | 'RS': SUM_Z SIGN(P(Z)) * EXP(-(||A-B||.^2)/(P(Z)^2))
'SIGMOID' | 'S': SIGM(A*B'/P)
'DSIGMOID' | 'DS': SIGM(||A-B||^(2P(1))/P(2))
'DISTANCE' | 'D': ||A-B||.^P
'MULTIQUADRIC' | 'MQ': SQRT(||A-B||.^2/P(1) + P(2))
'THIN-PLATE' | 'TP': ||A-B||.^(2*P(1))/P(2) * LOG(1+||A-B||.^(2*P(1))/P(2))
'N-THIN-PLATE' | 'NTP': -||A-B||.^(2*P(1))/P(2) * LOG(1+||A-B||.^(2*P(1))/P(2))
'MINKOWSKI' | 'M': SUM(|A-B|^P).^(1/P)
'CITY-BLOCK' | 'C': SUM(|A-B|)
'COSINE' | 'O': 1 - (A*B')/||A||*||B||
'FOURIER' | 'F'
'TANH' | 'T': TANH(P*(A*B')/LENGTH(A) + P);
'ANOVA' | 'A': ANOVA MODEL
'BSPLINE' | 'B': BSPLINE MODEL, ORDER P
'ANOVABSPLINE' | 'AB': ANOVA-BSPLINE MODEL, ORDER P
'ANOVASPLINE1' | 'AS1':ANOVA-SPLINE MODEL, ORDER 1
'ANOVASPLINE2' | 'AS2':ANOVA-SPLINE MODEL, ORDER 2
'ANOVASPLINE3' | 'AS3':ANOVA-SPLINE MODEL, ORDER 3
In the polynomial case for a non-integer P, the proximity is computed as D = SIGN(S+1).*ABS(S+1).^P, in order to avoid problems with negative inner products S = A*B'. The features of the objects in A and B may be weighted by the weights in the vector WEIGHTS. See also
proxm, mappings, datasets, This file has been automatically generated. If badly readable, use the help-command in Matlab. |
|