| seleigs SELEIGS  Select eigenvalues from a list
     J = SELEIGS(L,ALF)
 
  | Input |  | L | List of eigenvalues |   | ALF | Parameter determining the dimensionality and the eigenvalue-based mapping |   | (0,1) | fraction of the total (absolute value) preserved variance  Inf    - no dimensionality reduction, keeping all dimensions (it's noisy)  'p'     - projection into a Euclidean space based on positive eigenvalues only  'PARp'  - projection into a Euclidean space based on the PAR fraction of  positive eigenvalues; e.g. ALF = '0.9p'  'n'     - projection into a Euclidean space based on negative eigenvalues only  'PARn'  - projection into a (negative) Euclidean space based on the PAR fraction  of negative eigenvalues; e.g. ALF = '0.7n'  'P1pP2n'- projection into a Euclidean space based on the P1 positive eigenvalues  and P2 negative eigenvalues; e.g. ALF = '0.7p0.1n', ALF = '7p2n' |   | 1 | .. N  - number of dimensions in total |   | [P1 | P2] - P1 dimensions or preserved fraction of variance in the positive subspace  and P2 dimensions or preserved fraction of variance in the negative  subspace; e.g. ALF = [5 10], ALF = [0.9 0.1] |   | Output |  | J | Index of selected eigenvalues |   Description This is a low-level routine for PSEM, KPSEM, KPCA and PEPCA. From a list of  eigenvalues it selects the ones according to ALF.  See also
mappings, datasets, psem, kpsem, kpca, pepca,  | This file has been automatically generated. If badly readable, use the help-command in Matlab. | 
 |