PRTools Contents

PRTools User Guide

gendatp

GENDATP

Parzen density data generation

    B = GENDATP(A,N,S,G)
    B = A*GENDATP([],N,S,G)
    B = A*GENDATP(N,S,G)

Input
 A Dataset
 N Number(s) of points to be generated (optional; default: 50 per class)
 S Smoothing parameter(s)  (optional; default: a maximum likelihood estimate based on A)
 G Covariance matrix used for generation of the data  (optional; default: the identity matrix)

Output
 B Dataset of points generated according to Parzen density

Description

Generation of a dataset B of N points by using the Parzen estimate of the  density of A based on a smoothing parameter S. N might be a row/column  vector with different numbers for each class. Similarly, S might be  a vector with different smoothing parameters for each class. If S = 0,  then S is determined by a maximum likelihood estimate using PARZENML.  If N is a vector, then exactly N(I) objects are generated for the class I G is the covariance matrix to be used for generating the data. G may be  a 3-dimensional matrix storing separate covariance matrices for each class.

See also

datasets, mappings, gendat, gendatk,

PRTools Contents

PRTools User Guide

This file has been automatically generated. If badly readable, use the help-command in Matlab.