kmeans
KMEANS
k-means clustering
[LABELS,A] = KMEANS(A,K,MAXIT,INIT,FID)
Input | A | Matrix or dataset | K | Number of clusters to be found (optional; default: 2) | MAXIT | maximum number of iterations (optional; default: 50) | INIT | Labels for initialisation, or 'rand' : take at random K objects as initial means, or 'kcentres' : use KCENTRES for initialisation (default) | FID | File ID to write progress to (default [], see PRPROGRESS) |
Output | LABELS | Cluster assignments, 1..K | A | Dataset with original data and labels LABELS |
Description K-means clustering of data vectors in A. See also
datasets, hclust, kcentres, modeseek, emclust, prprogress, This file has been automatically generated. If badly readable, use the help-command in Matlab. |
|