LMNC LevenbergMarquardt trained feedforward neural net classifier
[W,HIST,UNITS] = LMNC (A,UNITS,ITER,W_INI,T)
DescriptionA feedforward neural network classifier with length(N) hidden layers with N(I) units in layer I is computed for the dataset A. Training is stopped after ITER epochs (at least 50) or if the iteration number exceeds twice that of the best classification result. This is measured by the labeled tuning set T. If no tuning set is supplied A is used. W_INI is used, if given, as network initialisation. Use [] if the standard Matlab initialisation is desired. An early stopping of the network optimisation is controlled by PRTIME. The entire training sequence is returned in HIST (number of epochs, classification error on A, classification error on T, MSE on A, MSE on T, mean of squared weights). This routine escapes to KNNC if any class has less than 3 objects. Uses the Mathworks' Neural Network toolbox. See alsomappings, datasets, bpxnc, neurc, rnnc, rbnc, knnc,
