PARZENC Optimisation of the Parzen classifier
[W,H] = PARZENC(A,H)
DescriptionComputation of the optimum smoothing parameter H for the Parzen classifier between the classes in the dataset A. The leave-one-out Lissack && Fu estimate is used in the optimisation of H The final classifier is stored as a mapping in W. It may be converted into a classifier by W*CLASSC. PARZENC cannot be used for density estimation. The returned value of H, however, can be used in a the Parzen density estimator PARZENM. The optimisation of H may be stopped prematurely by PRTIME. In case smoothing H is specified, no learning is performed, just the discriminant W is produced for the given smoothing parameters H. Smoothing parameters may be scalar, vector of per-class parameters, or a matrix with individual smoothing for each class (rows) and feature directions (columns) Example(s)prex_density, for, densities, and, prex_parzen, for, differences, between, PARZENC, PARZENDC and PARZENM, PRTIME
Reference(s)T. Lissack and K.S. Fu, Error estimation in pattern recognition via L-distance between posterior density functions, IEEE Trans. Inform. Theory, vol. 22, pp. 34-45, 1976. See alsodatasets, mappings, parzen_map, parzenml, parzendc, parzenm, classc, prex_parzen,
|