PRTools Contents

PRTools User Guide

plsm

PLSM

PLSM Partial Least Squares Feature Extraction

   W = PLSM
   W = PLSM([],MAXLV,METHOD)

   [W, INFORM] = PLSM(A,MAXLV,METHOD)

Input
 A training dataset
 MAXLV maximal number of latent variables (will be corrected  if > rank(A)); MAXLV=inf means MAXLV=min(size(A)) -- theoretical  maximum number of LV; by default = inf
 METHOD 'NIPALS' or 'SIMPLS'; by default = 'SIMPLS'

Output
 W PLS feature extraction mapping
 INFORM extra algorithm output
  DESRIPTION PRTools Adaptation of PLS_TRAIN/PLS_TRANSFORM routines No preprocessing is  done inside this mapping. It is the user responsibility to train  preprocessing on training data and apply it to the test data.

Crisp labels will be converted into soft labels which  will be used as a target matrix.

See also

pls_train, pls_transform, pls_apply,

PRTools Contents

PRTools User Guide

This file has been automatically generated. If badly readable, use the help-command in Matlab.