rfishercc
RFISHERCC
Fisher combining of randomly generated classifiers
W = RFISHERCC(A,N)
W = A*RFISHERCC(N)
Input | A | prdataset to be used for training, M objects, C classes | N | number of base classifiers to be generated default: M/10, <= 100. |
Output | W | trained classifier |
Description This routine generates a a random set of N simple classifiers, based on the 1-NN rule using a single, randomly selected object per class. The confindences (see KNNC) for the total training set A (in total N*(C-1) per object) are used to train a combiner using FISHERC. Example(s)
a = gendatb;
figure; scatterd(a);
plotc(a*rfishercc)
a = gendatm;
figure; scatterd(a);
plotc(a*rfishercc(2),'col')
a = setprior(sonar,0); % make priors equal
w1 = setname(rfishercc(10),'RFisher-10');
w2 = setname(rfishercc(20),'RFisher-20');
w3 = setname(rfishercc(40),'RFisher-40');
randreset(1); % for reproducability
e = cleval(a,{w1,w2,w3},[5,10,20,40,80],10);
plote(e);
See also
mappings, datasets, knnc, fisherc, This file has been automatically generated. If badly readable, use the help-command in Matlab. |
|