svmr
SVMR
SVM regression
W = SVMR(X,NU,KTYPE,KPAR,EP)
W = X*SVMR([],NU,KTYPE,KPAR,EP)
W = X*SVMR(NU,KTYPE,KPAR,EP)
Input | X | Regression dataset | NU | Fraction of objects outside the 'data tube' | KTYPE | Kernel type (default KTYPE='p', for polynomial) | KPAR | Extra parameter for the kernel | EP | Epsilon, with of the 'data tube' |
Output | W | Support vector regression |
Description Train an nu-Support Vector Regression on dataset X with parameter NU. The kernel is defined by kernel type KTYPE and kernel parameter KPAR. For the definitions of these kernels, have a look at proxm.m. See also
linearr, proxm, gpr, svc, This file has been automatically generated. If badly readable, use the help-command in Matlab. |
|