ClusterTools Contents

ClusterTools User Guide

clustf

CLUSTF

Clustering by the FFT (Farthest First Traversal) algorithm

   LAB = CLUSTF(A,K.MSIZE)
   LAB = A*CLUSTF(K.MSIZE)

Input
 A Feature based dataset with M objects.
 K Vector with desired numbers of clusters, default sampling of [2:M]
 MSIZE Number of objects (M) above which the dataset is preclustered by
 CLUSTM, reducing it to MSIZE objects. Default MSIZE = 5000. Use
 MSIZE = inf to avoid perclustering.

Output
 LAB M*N array with the results of the multi-level clusterings for the
 M objects. The columns refer to the N clusterings. They yield for  the objects the prototype indices of the clusters they belong to.

Description

The dataset A with M rows (objects) is clustered by the Farthest First  Traversal algorithm, initialised by the object nearest to the mean of A.  In every step a next cluster prototype is defined as the not yet selected  object in A that is farthest to the existing set of prototypes.  Objects are clustered by assigning them to the nearest prototype. The  dataset A can be either a double array or a PRTools dataset. Its labels  are negelected.

In LAB for all objects the index in A of the nearest cluster prototype is  returned. If K is a vector LAB has length(K) columns, returning a  multilevel clustering.

If M > MSIZE the dataset A is preclustered by PRECLUST using CLUSTM.  Unless specific values of K < 100 are needed it is recommended for fast  processing to use K = []. Speed may be further increased by using smaller  values of MSIZE, e.g. MSIZE = 500;

Example(s)

 randreset;                     % take care of reproducability
 data = gendatclust1(20000);    % generate 20000 objects in 10 clusters
                                % Run Mean Shift clustering
 lab = clustf(data,[2 5 10 18 30 50 100],2000);
                                % Show scatterplot for 10 clusters
 figure; scatn(lab(:,3),data,'FFT'); 
 figure; clusteval(lab,data);   % Evaluation by active learning

See also

datasets, mappings, cluste, clusth, clustk, clustkh, clustm, clusts, clustr, clusteval, clustcerr, clustc, clustnum, preclust,

ClusterTools Contents

ClusterTools User Guide

This file has been automatically generated. If badly readable, use the help-command in Matlab.